Streptomycin (SM) is a component of the first-line regimens for the treatment of tuberculosis that acts by binding to the 30S subunit of the ribosome, and thus inhibiting protein synthesis [1]. Mutations in genes rpsL and rrs encoding the ribosomal protein S12, and the 16S rRNA, respectively, have been associated with resistance to SM in Mycobacterium tuberculosis clinical isolates [2, 3]. Analysis of mutations in the rpsL and rrs genes in M. tuberculosis may contribute to the development of new diagnostic tests allowing for rapid detection of SM resistance.

METHODS

A total of 50 M. tuberculosis (32 SM-resistant and 18 SM-susceptible) strains isolated from as many MDR-TB patients in Poland throughout 2004 were included in the study. Mutations in the rpsL and rrs genes were detected through PCR amplification of both loci, followed by their direct sequencing in forward and reverse directions. The obtained nucleotide sequences were aligned against the reference sequences of the respective genes of M. tuberculosis reference strains. Nucleotide positions at codons are given in frames. Number and percentage of strains presenting with a given type of mutation are given in brackets.

RESULTS

Among the 32 SM-resistant isolates, 24 (75%) contained mutations in either the rpsL (16 isolates) or the rrs (8) gene. None of the isolates had mutations in both loci concurrently. Of the 16 SM-resistant isolates with rpsL gene mutations, 14 (87.5%) isolates had a substitution in codon 43 from lysine to arginine, whereas one isolate had the same amino acid substitution in codon 88. These two mutation types were found exclusively in SM-resistant strains. One SM-resistant isolate had a silent mutation in codon 39. This mutation was also found in two SM-susceptible isolates. Four rrs mutation types were identified. They occurred at positions 517 in 4 isolates, 906 in two isolates, 514 in one isolate, and 907 in another isolate. All isolates with mutations in the rrs gene were SM-resistant. Eight (25%) SM-resistant isolates were wild-type for both loci analysed.

CONCLUSIONS

The study revealed a relatively high frequency of mutations in SM resistance-related genes. Every nonsynonymous mutation detected in the rpsL or rrs gene was found exclusively in SM-resistant isolates. This underlines the usefulness of rpsL and rrs mutations as molecular markers predictive of resistance of tubercle bacilli to SM.

REFERENCES

CONTACT INFORMATION

Dr TOMASZ JAGIELSKI
University of Warsaw, Faculty of Biology, Department of Applied Microbiology
I. Miecznikowa 1, 02-096 Warsaw
POLAND
E-mail: t.jagielski@biol.uw.edu.pl